Why harvest native prairie for biofuel feedstock?

Annual cropping systems cover millions of acres in Iowa, stressing our key natural resources, soil and water. New biofuel feedstock systems will have to address these increasingly significant problems.

The 2007 Energy Independence and Security Act mandated the production of 36 billion gallons of renewable biofuel by 2022, with 44 percent from cellulosic sources. COBS investigates how to meet this demand with biofuel systems such as perennial native prairie that offer multifunctional benefits.

A prairie harvested for biofuel feedstock is likely to differ from the remnant or restored prairies familiar to most conservationists. Nevertheless, there are multiple advantages to using prairie for this purpose. In addition to biofuel, prairies provide: 1) habitat for wildlife, 2) refuges for beneficial insects, 3) decreased nitrogen, phosphorus and sediment movement into waterways, 4) improved soil quality, 5) a buffer against flood and drought, and 6) cultural, aesthetic and recreational values.

Learn more

Visit the COBS website: www.agron.iastate.edu/cobs

Leopold Center Competitive Grant Project E2009-18: www.leopold.iastate.edu/grants/e2009-18


Cover photo by Madeline Tomka

Funding for this project has been provided Cococo Philips, ISU College of Agriculture and Life Sciences, U.S. Department of Agriculture, Plant Sciences Institute and the Biobased Industry Center. The Leopold Center provided support for soil research at COBS through its competitive grants program.
Perennial prairies as beneficial biofuel

What is the experiment?

The Comparison of Biofuel Systems (COBS) experiment seeks to identify and develop cropping systems that will profitably produce biofuel feedstocks while improving biodiversity and protecting Iowa’s soil and water. Researchers established the experiment in 2008 on Iowa State University’s South Reynolds Farm in Boone County, Iowa. The experiment compares replicated plots of five cropping alternatives:

- Conventional corn-soybean (for grain)
- Continuous corn (for grain and stover)
- Continuous corn with rye cover crop (for grain and stover)
- Unfertilized reconstructed prairie (for biomass)
- Fertilized reconstructed prairie (for biomass)

What have researchers found?

Significant biomass produced

Estimates of the fuel yield in 2010 suggest that the fertilized prairie will produce comparable amounts of energy to the corn-soybean system, although less than the continuous corn systems. As expected, the unfertilized prairie produced the least amount of biomass in the early years of establishment.

Soil health preserved

The prairie systems had eight to twelve times more roots than the corn plots in 2010, with 40 to 55 percent of their total biomass occurring belowground (compared to only three percent for corn). Deep-rooted prairie plants hold soil in place, reducing the movement of sediment, nitrate and other pollutants. They add organic carbon to the soil, enriching its fertility and water-holding capacity, which helps crops withstand drought. By including prairie in the biofuel portfolio, farmers can grow a crop that protects and improves Iowa’s soil resources.

Water quality improved

Researchers measure the nitrate released into tile drainage water for each of the systems. In 2010 prairie systems had almost no nitrate loss, compared to the intermediate losses in the continuous corn with rye cover crop, and high losses in the continuous corn and corn-soybean systems. The fertilized prairie released 97 percent less nitrate to drainage water compared to the corn-soybean system.

Why measure biodiversity?

Biodiversity is often used as an indicator for ecosystem health. In general, diverse ecosystems are believed to have increased stability, productivity and resilience.

In this experiment researchers measured the functional group diversity, which shows site composition by grouping plants according to selected traits, in June and August over three years. Warm-season grasses dominated the unfertilized prairie, whereas the fertilized prairie had a more favorable composition for biodiversity with roughly equal abundances of warm-season grasses, cool-season grasses and forbs.

Previous research has found that fertilized prairies often have lower biodiversity than unfertilized prairies. However, these initial site-specific results from the COBS experiment suggest that managing a prairie with early-spring nitrogen fertilization and an annual fall harvest (after plants have reached maturity and transferred their nutrients belowground) may increase plant biodiversity as well as produce biofuel feedstock.

Photo credits: Aerial - Tom Schultz, Prairie/Butterfly - Madeline Tomka

Iowa State University does not discriminate on the basis of race, color, age, ethnicity, religion, national origin, pregnancy, sexual orientation, gender identity, genetic information, sex, marital status, disability, or status as a U.S. veteran. Inquiries can be directed to the Interim Assistant Director of Equal Opportunity and Compliance, 3280 Beardshear Hall, (515) 294-7612.